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APPROACH 
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SUMMARY 

A method is presented for solving the 3D hydrodynamic equations in homogeneous sea regions using the 
Galerkin approach in the vertical with a mixed basis set. The basis set is composed of eigenfunctions of the 
eddy viscosity profile and a fixed function through the vertical, the amplitude of which is related to the 
externally applied surface wind stress. By this means the high-shear near-surface layer, which has previously 
been difficult to resolve using eigenfunction expansions, is accurately represented in the solution. 

The computational advantages of this approach compared with other basis functions, in terms of computer 
time and memory, and the ease of implementation on parallel processors with vector facilities are briefly 
discussed. 

The accuracy of the method and the choice of the additional function is demonstrated for the problem of 
wind-induced currents in a rectangular sea region. 

Calculations clearly show that for wind-induced currents this new approach is significantly more accurate 
than the 'classical' eigenfunction method. Also, the new method retains the advantages of the eigenfunction 
approach, namely insight into the mechanisms involved and ease of implementation on vector-parallel 
computers, together with minimization of computer time and memory. 

1. INTRODUCTION 

Solution of the three-dimensional hydrodynamic equations for tidal and wind-driven flows using 
the Galerkin approach with a set of functions (the basis set) in the vertical has proved a valuable 
alternative to using finite difference methods.'-6 

Chebyshev 
polynomials9 and eigenfunctions.', lo, The computational advantages of eigenfunctions in 
terms of minimizing the computational effort" and their ideal nature for parallel processing on 
multiprocessor vector computers' 39  l4 have recently been reported. 

Although a basis set of eigenfunctions is ideal for tidal problems and has been used very 
successfully in an extensive number of  application^,^^^^"^'^ a basis set of these functions is not 
ideal for wind-driven problems. For these problems, calculations'*2 show that the rate of 
convergence of the eigenfunction expansion in the near-surface layer is slow. The basic reason for 
this is that the vertical derivative of the eigenfunction is usually taken as zero at the surface (an 
ideal boundary condition for tides); however, when a wind stress is applied, the expansion is found 
to converge extremely slowly in the near-surface layer. An enhanced rate of convergence can be 
obtained by generating eigenfunctions which are sheared in the near-surface layer (a 'sheared 

A range of basis functions have been used, namely Legendre  polynomial^,'^ 
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eigenfunction' approach16), although in this case Davies16 found that additional terms were 
generated which coupled the hydrodynamic equations. This increased the computational 
overhead, and also the coupling meant that the algorithm was not suitable for parallel processing. 

In this paper an alternative approach is presented in which a mixed basis set is used, composed 
of a single, fixed, specified function through the vertical, the magnitude of which is proportional to 
the wind stress, and the classical expansion of eigenfunctions having a zero derivative at the 
surface.1° This new method we will refer to in this paper as an 'enhanced eigenfunction' approach. 

The purpose of the specified function is to accurately represent the surface shear layer, leaving a 
smoother solution which can be readily approximated with a small number of eigenfunctions. The 
method is similar to the tau appr~ach . '~  It has the computational advantage over the 'sheared 
eigenfunction' method16 of yielding an uncoupled set of equations (in the case of the linear 
hydrodynamic equations) but retaining a high rate of convergence. 

The mathematical development of the method is presented in the next section, with subsequent 
sections examining the rate of convergence for wind-driven currents in a closed rectangular basin. 
In order to compare the rates of convergence of the new approach with the 'classical' 
m e t h ~ d , ' - ~ * ~ * ' ~  the rectangular basin is chosen to approximate the North Sea with identical 
dimensions to those used by these other authors. 

2. SOLUTION OF THE HYDRODYNAMIC EQUATIONS 

2.1. Three-dimensional equations 

Here for the sake of clarity we consider the linear hydrodynamic equations in Cartesian 
co-ordinates, although the method can be readily extended to the non-linear equations (see 
Reference 18 for the solution of these equations using the Galerkin approach) or to polar 
co-ordinatesq2 

The working equations in sigma co-ordinates, cr = z/h, are given by 

In these equations, t denotes time, x, y and z are Cartesian co-ordinates and u, u are the x- and 
y-components of velocity respectively. The acceleration due to gravity, g, and the geostrophic 
coefficient y are taken as constant, with p the vertical eddy viscosity and h the water depth. 

The surface and bed boundary conditions in sigma co-ordinates are given by 

In these equations, p is the density, Fs and G, are the x- and y-components of surface wind stress 
respectively and F ,  and G B  are the x- and y-components of bed stress respectively. 
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2.2. Numerical solution 

Here we briefly outline the major steps in solving equations (1H3) using the Galerkin approach 

Consider initially the u- and u-components of current expressed as 
with the 'enhanced' eigenfunction method. 

u = $u + up, V= $" + Vp, (6) 
with Up and Vp approximated by expansion. 

where $, (x ,  y, z,  t )  and I / I ~ ( X ,  y, z, t )  are specified external functions and Up and V, are expanded in 
terms of rn basis functionsf,(o) and coefficients Ar(x ,  y, t) and Br(x, y, t )  respectively. 

Substituting expansions (6) in equation (1) gives 

"=-"(h[: at ax UPda)-$(hj: Vpda) -&(hj:$udo)-$(hJ'd$vdo). (8) 

Applying the Galerkin method to the solution of equation (2), multiplying byf, and integrating 
from sea surface to sea bed, with the term involving viscosity being integrated by parts (see 
References 1 and 2 for details), gives, after some rearranging and insertion of surface and bed 
boundary conditions (4) and (5),  

where 

2.3. Form of basis functions 

The choice of bahs functionsf, is arbitrary. The various computational advantages/disadvant- 
ages of using polynomials or eigenfunctions of the eddy viscosity distribution have been reported 
in the literat~re.'.~.  calculation^'^ showed that eigenfunctions could accurately represent high- 
shear near-bed layers when applied with a no-slip condition. However, in the case of wind-induced 
flow they converged slowly in the near-surface layer. This slow convergence is a direct result of the 
vertical derivative of the eigenfunction being zero at the surface. 

In order to compare the present approach, in which functions II/. and $" are added to the 
expansion, with the previous method of Heaps," we chose the basis functionsf, to be eigenvalues 
of 

subject to the surface boundary condition 
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Also, to be consistent with Heaps and to clearly determine the influence of II/. and II/, on the 
surface current, we also chose to solve the equations subject to a linear slip bottom boundary 
condition," namely 

with k a linear friction coefficient. 

into two equations gives 
Consider initially the u-component of velocity. Substituting equation (6) in (13) and separating 

= kII/Jl), 
h an 

In order to satisfy (15) for arbitrary coefficients A, in expansion (7), the eigenvalue problem (1 1) 
must be solved subject to the sea bed boundary condition 

- e g l  hdo =kf,( l ) .  

In practice, since the bottom boundary condition is a natural boundary condition, it is not 
necessary for the eigenfunctions to satisfy it exactly. However, because our primary aim here is to 
compare the rate of convergence of the present 'enhanced' eigenfunction approach with the 
'classical' method of Heaps," we will compute eigenfunctions which solve (16) exactly. 

Calculation of the eigenfunctions and eigenvalues of (1 1) can be readily accomplished for an 
arbitrary vertical variation of eddy viscosity using the Galerkin approach. Multiplying (1 1) byf, 
and integrating the viscosity term by parts yields 

Equation (17) can be readily solved for an arbitrary vertical profile of eddy viscosity using 
standard numerical methods (e.g. Reference 1). 

To be consistent with Heaps,' eigenfunctions and eigenvalues were obtained from equation 
(17) subject to boundary conditions (12) and (16). 

Substituting (7) in (9) and using a basis set of orthogonal eigenfunctions normalized such that 
J(0) = 1, we obtain 

In deriving (18) it is assumed that the eigenfunctions satisfy surface boundary condition (12), 

For the case in which the eigenfunctions have been computed subject to bottom boundary 
although no assumption has been made about the bottom boundary condition. 

condition (16), equation (18) can be further simplified. 
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Using (1 5), (1 6) and expansion (7) we have 

Also, from (13) and (6) we have 

By substituting (19) and (20) in (18), the term involving the bottom stress FB can be eliminated to 
give 

where 

To be consistent with Heaps," it is convenient to express coefficients A, and Br as 

giving, from equation (8), 

where 

From equation (21) we have 

aur Fs 'Jr Er at= Y K-9 - a, +--fi(O)--+ h2 ax ph  Fe, 

with Fe given by (22). 
In an analogous manner a similar equation for the u-current can be obtained. 
Comparing equations (23) and (24), derived using the Galerkin method with a basis of 

eigenfunctions satisfying a slip bottom boundary condition, with the corresponding equations 
obtained by Heaps" shows the equations to be identical except for the additional terms He and F,. 
These terms arise due to the additional functions +,, and 

The first five of these eigenfunctions computed with p constant at 0.0130rn2s-' and 
k =0*002 m s - '  are shown in Figure 1. It is clear from this figure that the modes are sheared in the 
near-bed layer, a consequence of satisfying exactly the bottom slip boundary conditions. However, 
they have a zero vertical derivative at the surface, owing to boundary condition (12), and we will 
show this leads to a slow rate of convergence in the surface layer. 

Obviously, if the terms +, and $, can be chosen to improve the rate of convergence of the 
eigenfunction expansion in the near-surface layer during wind forcing (a situation where the 
'classical' eigenfunction approach proved inaccurate'. 2), then the present method yielding a set of 

in expansions (6). 
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Figure 1. Vertical profiles of the first five modes computed with p=OO130 m2 s-l and k=0.002 ms-' 

m uncoupled equations will have advantages over the 'classical' eigenfunction approach of 
Heaps." The choice of $,, and $u is considered in the next section. 

2.4. Initial conditions 

The coefficients A, and B, in equation (7) can be readily determined at the start of a calculation 
(time t=O)  from a knowledge of the initial specified flow fields U(0) and V(0). Hence, substituting 
(7) in (6) at time t=O,  we have 

~ ( o ) = $ u +  F Br(O)h(a), (25) 
r = l  

u(o)=$u+ f Ar(o)h(a), 
r = l  

with A,(O) and Br(0) the coefficients at time t = O .  Rearranging (25) and using the orthogonality 
property of the eigenfunctions gives 

with B, determined in an analogous manner. In many probelms the initial flow fields U(0) and V(0) 
are zero, leading to a further simplification of (26). The integrals in (26) can be readily computed by 
numerical means. 

It is important to note that the computation of the coefficients A,(O) and B,(O) in (26) with zero 
initial flow fields is different than in the 'classical' approach where the initial condition is satisfied 
exactly, irrespective of the number of terms, m, in expansion (25), by setting the coefficients to zero. 
In the 'enhanced convergence' approach with $,, and I,+,, non-zero in (25) the initial conditions can 
only be approximated for a finite m and this could have some effect upon the accuracy of a short- 
time integration for m small. However, as we will show in a subsequent section, this did not appear 
to be a major problem. 

3. CHOICE OF ENHANCEMENT FUNCTIONS $,, AND $u 

Previous have clearly shown that eigenfunctions, are ideal for tides but have a 
low rate of convergence for wind-driven problems, i.e. problems where the surface stress is non- 
zero. Using this fact, it is sensible for $,, and $u to be of the form 

with $,, and $u proportional to the wind stress and where the factor jIh/pp(O), with jI a free 
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parameter, is used with #(a), a function in the vertical, to determine both the profiles of $" and #, 
and their vertical derivatives. 

Heaps" showed that in the case of constant eddy viscosity the truncation error in expansion (7) 
after m terms would be approximated by #,, and t,bv with /3= 1 and 

(3a2-6a+2)-- 7z2 m-l C cos ('::)I - (function 1). 
12 r = l  

Substituting (29) in (27) and (28) and computing a$/aa at the surface, it is evident that for p= 1, 
#,, and $, satisfy exactly the surface stress boundary condition. 

An alternative to (29) is 

Again in the case of j?= 1 the surface stress boundary condition can be satisfied exactly. Also, 
bottom linear slip boundary conditions (13) are satisfied by (30). However, in the case in which the 
more physically realistic quadratic friction law is applied at the sea bed, or modes satisfying a 
no-slip bottom boundary condition are applied, this could be a restriction. 

Although in this paper we are primarily concerned with comparing the present approach with 
that of Heaps'O using a slip condition, it is advantageous to consider other types of functions than 
those given by equations (29) and (30). Calculations have shown that the Galerkin approach can 
be readily applied with quadratic friction and also a no-slip bottom boundary condition. Bearing 
in mind these considerations, we also consider here a discontinuous form of $(a), namely 

Again for f i  = 1 this piecewise function satisfies the surface boundary condition. However, at s = a 
both its value and its derivative fall to zero, and below this value of a the function vanishes. 

Such a piecewise function is useful in that it can account for the near-surface shear layer, without 
influencing the solution below that layer, where previous calculations have shown that the 
eigenfunction expansion converges rapidly. The influence of the choice of the functional form of 
$(a) upon the rate of convergence of the various expansions will be considered in detail in the next 
section. 

4. WIND-DRIVEN CURRENTS IN AN IDEALIZED NORTH SEA BASIN 

4.1. Model description 

To be consistent with previous calculations of Heaps'O and other calculations using a range of 
polynomial functions or grid boxes in the vertical, we consider a closed rectangular North Sea 
basin ('the Heaps rectangle') having dimensions 400 km in the x-direction and 800 km in the 
y-direction. A uniform staggered grid (Arakawa C grid) was used in the horizontal with grid 
spacings Ax=400/9 km and Ay= 800/17 km (see Reference 1 for details of the model). The sea, 
initially at rest, was subjected to a suddenly imposed and maintained wind stress, with values 
F, = 0 and G, = - 1.5 N m - 2. A linear slip coefficient k = 0.002 m s - was used in the calculation, 
with p= 1025 kgm-3, g=9-81 ms-2, Coriolis parameter y= 1-2 x 10-4s-1 and water depth 
h=65 m. The unconditional time-stepping algorithm given in Reference 2 was used to integrate 
the equations, with a time step of 6 min. 
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In computing the Coriolis term on a staggered grid, it is necessary to average over four 
neighbouring velocity points. This procedure was used in the interior of the rectangle, although at 
points adjacent to the land only grid points in the sea region were used, the so-called 'wet points 
only' method of Jamart and O ~ e r . ~  This averaging method is slightly different from that of 
Heaps," who used an average over four grid points everywhere, giving rise to a 'spurious' residual 
boundary layer current.' 

4.2. Numerical calculations 

4.2.1. Profiles 30 h after the onset of the wind. In order to compare the currents computed with 
the 'enhanced' eigenfunction method with previous c a l c ~ l a t i o n s , ~ * ~ ~ ' ~ ~  l2 the eddy viscosity was 
fixed at 0.0650 m2 s- '  with the bottom friction coefficient k=0-002 m s - l .  Surface and bottom 
currents at the centre of the basin, 30 h after the onset of the wind field, computed using the 
'classical' eigenfunction method and the 'enhanced' eigenfunction method with the various 
functions given in equations (29)-(31), are shown in Table I. 

Table 1. U- and V-components of surface (S) and bottom (€3) currents 
(cm s- l )  at the centre of the North Sea rectangle, 30 h after the imposition of 
the wind field, computed with an eddy viscosity of 650 cm2 s-' ,  j= 1 and 

s=025 
~ ~ ~ 

Number of terms (m) in expansion 

N o  additional function 
US - 15.03 - 15.06 - 15.07 - 15.07 
VS - 29.92 -32.14 - 33.73 - 3425 
UB 7.13 7.12 7.12 712 
VB 11.38 11.09 10.97 1095 

m 

2 4 6 10 

us - 13.71 
VS - 36.34 
UB 7.80 
VB 8.55 

US - 13'72 
VS - 35.72 
UB 7.8 1 
VB 10.30 

US - 13.74 
VS -31.57 
UB 7.82 
VB 13-16 

Function 1 
- 14.91 
-35.34 

7.17 
10.65 

Function 2 
- 14.91 
- 35.28 

7-17 
10.87 

Function 3 
- 14.91 
- 35.65 

7.17 
10.95 

- 15.03 
- 35.27 

7-13 
10.85 

- 15.03 
- 35.26 

7-13 
10.92 

- 15.02 
- 35.39 

7.13 
10.81 

- 15.07 
- 3524 

7.12 
1090 

- 15.07 
- 35.25 

712 
1093 

-1506 
- 35.21 

7.12 
10-95 
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- 0 . 5  

0 .  

0.2 -- 

0 . 4  -- 

0- 

0 . 6  -- 

0.8 -- 

I .  - 

It is evident from this table and from Figure 2 that the eigenfunction expansion for the 
u-component of current (the component at right angles to the wind direction) converges very 
rapidly. The surface boundary condition for this component is one of zero external stress, a 
boundary condition satisfied by each mode. However, in the case of the u-component of current 
(the component in the wind direction) the 'classical' eigenfunction expansion converges slowly, 
with 30 functions still not giving a fully converged solution (see Table I). Also, the v-component of 
current computed with m = 6 shows significant 'ripples' in the vertical, which only disappear when 
m = 30 (see Figure 2). 

- 0 . 4  -0.3 -0.2 -0 .  I 0 .  0 .  I 

. . I I I . I I I !  'I..... 

\ 
I 

/ 

U (ms-')  
- 0 . 1 5  -0.1 -0 .05  0. 0.05 0. I 

O."i'-.  , , I , ,  , , ! ,  , , , ! , , -4 
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In the case of the 'enhanced' eigenfunction approach the series converges very rapidly, 
irrespective of whether function 1, 2 or 3 (equations (29H31)) is used to enhance the rate of 
convergence, with maximum differences only of the order of 1% occurring in the surface 
u-component of current between solutions using m = 4 and 10 functions (see Table I and Figure 3). 
Also from Table I it is evident that the surface current computed with m = 4 using the 'enhanced' 
eigenfunction approach is significantly more accurate than that computed using the 'classical' 
approach with m = 30. 

It is apparent from Figure 3 that smooth profiles are computed using function 3 with m = 4  
(similar profiles were found with functions 1 and 2), which do not exhibit any of the 'ripples' found 

U ( m  s-I) 

-0.2 -0 .15 

o. 1 , , * , * . . * - O i l .  . , : 0 , 0 5 ,  , , , oi * , , , o . p 5 ,  , , .", 

V (m s-l) 
- 0 . 5  - 0 . 4  -0.3 -0.2 -0.1 0. 0. I 

I I I I I 0 .  . .  I . . , . . .  ! . .  

0 .2  -- 

0.4 -- 

0.6 -. 

0 . 8  -_ 

1 .  - 
Figure 3. Velocity profiles (u- and v-mmponents) at the centre of the basin, 30 h after the onset of the wind field, computed 
using ~ = 0 . 0 6 5 0  m2 s - '  with m = 4  (-) and m= 10 (---) by the 'enhanced' eigenfunction approach (function 3). Also 

shown are profiles computed with m= 30 (... .) by the 'classical' eigenfunction approach 
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previously (Figure 2) using the ‘classical’ eigenfunction approach with m = 6. Certainly, current 
profiles using the ‘enhanced‘ eigenfunction method are significantly smoother (Figure 3) than 
those computed using the ‘classical’ method, where ripples occur due to a Gibbs-type phenom- 
enon associated with the expansion of eigenfunctions trying to fit the high-shear surface region. In 
the ‘enhanced’ method this region is accounted for by the external function, leaving a more 
smoothly varying solution which can be readily approximated by the eigenfunctions. 

Comparing currents computed here with previous calculations using polynomial basis setsg or 
grid box methods,” it is clear that the present method is of comparable accuracy whilst retaining 
the low computational overhead (in terms of computer time and memory) of the eigenfunction 
approach compared to other methods.12 

4.2.2. Projles 3.5 h after the onset of the wind. In the previous series of calculations, profiles 
computed 30 h from the onset of the wind were compared with each other. The reason for 
choosing this specific time was that the rate of convergence and accuracy of the solution could be 
compared directly with previously published results. However, recent calculations using a point 
model in the vertical2 have shown that the physical mechanism determining the current profile is 
an initial highly sheared surface layer, following the initial wind impulse, within which shear 
subsequently diminishes as the wind‘s momentum is transferred to depth. In these calculations the 
surface u-component of current reached a maximum about 3.5 h after the imposition of the wind. 
Consequently, a more rigorous test of the ‘enhanced’ eigenfunction approach is to examine the 
rate of convergence of the expansion at this time (Table 11). Also, since this is a short-time 
integration, the influence of any inaccuracies in determining the initial conditions using the 
‘enhanced’ eigenfunction method will be apparent. (Only surface and mid-depth currents are given 
in Table 11, since bottom currents were small, of the order of a few cms-’ at this time.) 

It is evident from Table I1 that, as expected, the ‘classical’ eigenfunction method again converges 
slowly in the case of the u-component of current. However, as in the previous calculation, the 
inclusion of one of the additional functions significantly enhances the rate of convergence, with an 
expansion of 10 functions showing little difference between current profiles computed using 
enhancement function 1, 2 or 3. It is apparent, however, from Table I1 (V-surface currents in 
particular) that the eigenfunction expansion appears to converge more rapidly using function 1 or 
2 rather than 3. To examine this in more detail, the calculation was repeated with the eddy 
viscosity reduced by a factor of five to 00130 mz s - l ,  giving significantly enhanced shear in the 
surface layer at time t=3 .5  h. It is evident from Table 111 that in this case the ‘classical’ 
eigenfunction method converges very slowly, with a significant difference in the surface 
u-component of current computed with m=20 or 30 (see Table I11 and Figure 4). As in the 
previous calculations, vertical ‘ripples’ due to a Gibbs-type effect are present even when rn is 
increased to 20, and only with m = 30 do they become negligible (Figure 4). (Only surface currents 
are shown in Table 111, since currents below this layer were small and converged rapidly as m was 
increased.) 

It is evident from Figure 5 and Table I11 that using the ‘enhanced‘ eigenfunction approach 
(Calc. A) with m = 4 (Figure 5 )  also yields some ‘ripples’ in this calculation. However, these ‘ripples’ 
are no longer present when rn is increased to 10 (Figure 9, giving profiles as smooth as those 
computed using the ‘classical‘ eigenfunction method with m = 30 (compare Figures 4 and 5). No 
inaccuracies due to the approximation of the initial conditions using the ‘enhanced’ eigenfunction 
method were found in the calculations (see Table 11, Calc. A and a comparison of Figures 4 and 5). 

Again, currents computed using the ‘enhanced’ eigenfunction approach with rn= 6 or 10 terms 
in the expansion are not significantly different for the three functions considered here (see 
Table 111, Calc. A), although it would appear that the rate of convergence is slightly faster with 
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Table 11. U- and V-components of surface (S) and mid-depth (M) currents 
(cm s- l )  at the centre of the rectangular basin, 3.5 h after the imposition of 
the wind field, computed with an eddy viscosity of 650 c m ' ~ - ~ ,  B= 1 and 

s = 025 
~ ~ ~ ~ ~ ~ ~~~~~~ 

Number of terms (m) in expansion 

6 10 20 30 

N o  additional function 
US - 25.84 - 25.87 - 25.88 - 25.88 
VS - 53.38 - 55.63 - 57.20 - 57.73 
U M  - 11.03 - 11.02 - 11.02 - 11.02 
VM - 14-27 - 13.94 - 1349 - 13.78 

m 

2 4 6 10 

US 
VS 

- 24.52 
- 59.60 
- 11.94 
- 12.74 

- 24.52 
- 58.91 
-11.94 
- 13.55 

- 24.52 
- 54.53 
- 11.94 
- 17.24 

Function 1 
- 25.72 
- 58.80 
- 10.97 
- 13.85 
Function 2 
- 25.72 
- 58.72 
- 10.97 
- 13.77 

Function 3 
- 25.72 
- 59.1 1 
- 10.97 
- 13-64 

- 25.83 
- 58.74 
- 11.03 
- 13.75 

- 25.84 
- 58.72 
- 11.03 
- 13.77 

- 25.83 
-5885 
- 11.03 
- 13.62 

-25.87 
- 58.71 
- 11.02 
- 13.77 

- 25.87 
- 58.72 
- 11.02 
- 13.77 

- 25.87 
- 58.68 
- 11.02 
- 13.80 

function 2 than with function 1, which in turn is preferable to function 3. However, these 
differences are not that significant. 

In calculations A the enhancement function J/ was chosen to satisfy the surface boundary 
condition. In the Galerkin approach this is not necessary and in a final series of calculations 
(Calc. B) the influence upon accuracy of not satisfying this boundary condition was investigated. 
To this end f i  was changed from 1 to 0.75, giving a surface stress for each 'enhancement function' 
which is 25% less than the applied stress. Also, in the case of function 3, s was set at 0-125. 

As expected, it is clear from a comparison of calculations A and B in Table I11 that with f i=  0.75 
the series converges more slowly (although naturally faster than the 'classical' approach, 
equivalent to f i=  0). However, with rn = 10 the surface u-component of current is only of the order 
of 3% less than the true solution (taken to be 130 cm s- '; Table 111)-a solution significantly more 
accurate than that obtained using the 'classical' approach with m=20, giving an error of 12%. 

Although the use of a low eddy viscosity value at these high wind speeds may be somewhat, 
artificial it does clearly demonstrate the computational advantages of the new method developed 
here. 
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Table 111. U- and V-components of surface (S) current (an-') at the the centre of the 
rectangular basin, 3-5 h after the imposition of the wind field, computed with an eddy 
viscosity of 130 cmz s- ' , initially with f l=  1 and s = 0.25 and subsequently with fl  = 0.75 

and s=0.125 (Calc. B) 

Number of terms (m) in expansion 

6 10 20 30 

N o  additonal function 
US - 62.56 - 63.35 - 63.54 - 633-5 
vs - 104.07 - 114.70 - 122.54 - 125.10 

m 

Calc. 2 4 6 10 

Function I 
A US - 46.62 - 60.23 - 62.56 - 63.34 

- 130.12 VS - 146.69 - 131.68 - 13052 
B US - 46.62 - 60.23 - 62.56 - 63.34 

VS - 125.19 - 121.53 - 123.91 - 126.26 
Function 2 

A US - 46.63 - 60.23 - 62.56 - 63.35 
VS - 139.84 - 130.65 - 130.19. - 130.13 

B US - 46.63 - 60.23 - 62.56 -63.35 
VS - 120.05 - 120.75 - 123.66 - 126.27 

Function 3 
A US -46.62 -60.17 - 62'48 - 63.29 

- 129.96 vs - 125.00 - 132.71 - 130.73 
B US -46.71 - 60.43 - 62.82 - 63.63 

vs - 89.88 - 115.49 - 124.1 1 - 127.74 

5. CONCLUDING REMARKS 

It is clear from the mathematical analysis presented in Section 2 that by using the Galerkin 
approach with an expansion in terms of a fixed function ('enhancement' function, to approximate 
a wind-driven high-shear region) and a basis set of eigenfunctions, a more generalized eigenfunc- 
tion method than that developed by Heaps" can be obtained. It is apparent that the present 
method can include time-varying wind stress and eddy viscosity. Also, the vertical variation of 
eddy viscosity is arbitrary, although a constant value has been used here to be consistent with 
Heaps." Obviously, if the external function is omitted and the basis set is not chosen to be 
eigenfunctions, the present method is identical to that of References 1, 2 and 9. 

It is clear from the calculations presented here that the 'enhanced' eigenfunction method 
converges more rapidly than the 'classical' approach. Also, it gives solutions of comparable 
accuracy to those obtained using other polynomial functionsg or a grid box method" while 
retaining the major advantages of a set of uncoupled linear equations, which are ideal for solution 
on vector multiprocessor  computer^.'^^ l4 

It is clear from the calculations presented here that there is a significant advantage in ensuring 
that the 'enhancement' functions do satisfy the surface boundary condition in a wind stress 
problem. In this case it appears that the eigenfunction expansion converges slightly more rapidly 
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Figure 4. Velocity profiles (u- and u-mmponents) at the centre of the basin, 3 5  h after the onset of the wind field, computed 
using p=0.013OmZs-’ with m=20 (-) and m=30 (---) by the ‘classical’ eigenfunction approach 

with function 2, satisfying exactly both surface and bottom boundary conditions, than with 
function 1, an analytic solution satisfying the surface boundary, which in turn converges more 
rapidly than function 3, chosen empirically. However, when the eddy viscosity is not constant in 
the vertical but exhibits a more physically realistic profile, or a quadratic bottom friction law is 
applied (again more physically realistic), then the analytic equivalents of functions 1 and 2 would 
not be available and function 3 or something equivalent would have to be used. Also, as shown in 
Table 111, this function has some advantages if the surface boundary condition is not satisfied 
exactly. 



SOLUTION OF THE 3D LINEAR HYDRODYNAMIC EQUATIONS 
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Figure 5. Velocity profiles (u- and ucomponents) at the centre of the basin, 3.5 h after the onset of the wind field, computed 
using p=0.0130m2ss-' with m=4 (-) and m = 1 0  (---) by the 'enhanced' eigenfunction approach (function 3) 

Calculations are presently in progress using the method developed here to simulate three- 
dimensional time-varying wind-induced currents in a high-resolution fine-grid model of the Celtic 
and Irish Seas, and results will be reported subsequently. 
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